Problem 22-87

Ch22, Problem 87

Find the frequency of oscillation of an electric dipole, of dipole moment \(\vec{p} \) and rotational inertia \(I \), for small amplitudes of oscillation about its equilibrium position in a uniform electric field of magnitude \(E \).

Solution:

The magnitude of the torque acting on the dipole is given by \(\tau = \vec{p}E \sin \theta \), where \(\vec{p} \) is the magnitude of the dipole moment, \(E \) is the magnitude of the electric field, and \(\theta \) is the angle between the dipole moment and the field. It is a restoring torque: it always tends to rotate the dipole moment toward the direction of the electric field. If \(\theta \) is positive, the torque is negative and vice versa.

Write \(\tau = -\vec{p}E \sin \theta \). If the amplitude of the motion is small, we may replace \(\sin \theta \) with \(\theta \) in radians.

Thus, \(\tau = -\vec{p}E \theta \). Since the magnitude of the torque is proportional to the angle of rotation, the dipole oscillates in simple harmonic motion, just like a torsional pendulum with torsion constant \(\kappa = \vec{p}E \). The angular frequency \(\omega \) is given by

\[
\omega^2 = \frac{\kappa}{I} = \frac{\vec{p}E}{I},
\]

and the frequency of oscillation is

\[
f = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{\vec{p}E}{I}}.
\]